Spanning Tree

A tree containing all vertices.
In graph G, it is a subset of edges that form a tree and connects all vertices.

Minimum Spanning Tree

Spanning Tree with minimum weight is Minimum Spanning Tree.

Use cases of MST(Minimum Spanning Tree)


Network design.
– telephone, electrical, hydraulic, TV cable, computer, road



Cluster analysis
k clustering problem can be viewed as finding an MST and deleting the k-1 most
expensive edges.

Approximation algorithms for NP-hard problems.
– 
travelling salesperson problem, Steiner tree

Indirect applications.
  • max bottleneck paths
  • LDPC codes for error correction
  • image registration with Renyi entropy
  • learning salient features for real-time face verification
  • reducing data storage in sequencing amino acids in a protein
  • model locality of particle interactions in turbulent fluid flows
  • autoconfig protocol for Ethernet bridging to avoid cycles in a network

Algorithm to find Minimum Spanning Tree


1) Create a set mst that keeps track of vertices included in MST.
2) Assign a key to all vertices in the input graph. Initialize all keys with value INFINITE.
3) While mst doesn’t include all vertices
….a) Pick a vertex u which is not there in mst and has minimum key value.
….b) Include u to mst.mst.
….c) Update key of all adjacent vertices of u. To update the key values, iterate through all adjacent vertices. For every adjacent vertex v, if weight of edge u-v is less than the previous key value of v, update the key value as weight of u-v


package com.techiekunal.examples.datastructure;

import java.util.*;
import java.util.Map.Entry;

/**
 * Implementation of Prims Algorithm
 * 
 * 1) Create a set mst that keeps track of vertices already included in MST. 
 * 2) Assign a key to all vertices in the input graph. Initialize all keys with value INFINITE.
 * 3) While mst doesn’t include all vertices 
 * ….a) Pick a vertex u which is not there in mst and has minimum key value. 
 * ….b) Include u to mst. 
 * ….c) Update key value of all adjacent vertices of u. To update the key values, iterate through all adjacent
 * vertices. For every adjacent vertex v, if weight of edge u-v is less than the previous key value of v, update the key value as weight of u-v
 * 
 * @author kunalsaxena
 *
 */
public class PrimsAlgoExample {

 // To store graph information
 HashMap<Integer, Node> graphStorage = new HashMap<>();

 /**
  * Node is graph vertex, storing :- id : name of node key : it will help in
  * Prim's minimum cost adjacentNodes : map of adjacent nodes and weight of
  * connecting edge
  * 
  * The idea of using key values is to pick the minimum weight edge from cut.
  */
 private static class Node {
  private int id;
  private int key;
  private Map<Node, Integer> adjacentNodes = new LinkedHashMap<>();

  public Node(int id) {
   this.id = id;
   this.key = Integer.MAX_VALUE; // Max value is like infinite
  }

  @Override
  public String toString() {
   StringBuilder sb = new StringBuilder();
   sb.append(id + " Adjacent Nodes {");
   Iterator<Node> itr = adjacentNodes.keySet().iterator();
   while (itr.hasNext()) {
    sb.append(itr.next().id);
    if (itr.hasNext()) {
     sb.append(", ");
    }
   }
   sb.append("} key=" + key);
   sb.append(" || ");
   return sb.toString();
  }

  @Override
  public boolean equals(Object obj) {
   if (obj == null) {
    return false;
   }
   if (this.getClass() != obj.getClass()) {
    return false;
   }
   Node node = (Node) obj;
   if (this.id == node.id) {
    return true;
   }
   return false;
  }

  @Override
  public int hashCode() {
   return super.hashCode();
  }

 }

 // get node from HashMap
 private Node getNode(int id) {
  return graphStorage.get(id);
 }

 // Add Edge : make source and destination adjacent & vice Versa
 public void addEdge(int source, int destination, int weight) {
  Node s = getNode(source);
  Node d = getNode(destination);

  // Adding edge : creating adjacent relation both sides
  s.adjacentNodes.put(d, weight);
  d.adjacentNodes.put(s, weight);
 }

 // Create Example Graph
 private void createGraph() {
  this.graphStorage.put(1, new Node(1));
  this.graphStorage.put(2, new Node(2));
  this.graphStorage.put(3, new Node(3));
  this.graphStorage.put(4, new Node(4));
  this.graphStorage.put(5, new Node(5));
  this.graphStorage.put(6, new Node(6));
  this.graphStorage.put(7, new Node(7));
  this.graphStorage.put(8, new Node(8));

  addEdge(1, 2, 5);
  addEdge(1, 3, 6);
  addEdge(1, 4, 14);
  addEdge(1, 5, 8);
  addEdge(2, 3, 12);
  addEdge(2, 7, 9);
  addEdge(2, 6, 7);
  addEdge(4, 5, 3);
  addEdge(5, 6, 10);
  addEdge(6, 8, 15);
 }

 
 
 // Priority queue or min-heap to find connecting edge with min cost
 private final PriorityQueue<Node> queue = new PriorityQueue<>(8,new Comparator<Node>() {
  @Override
  public int compare(Node o1, Node o2) {
   return o1.key - o2.key; // natural order : ascending : minimum first
  }
 });

 // store minimum spanning tree vertex
 private final Set<Node> mst = new HashSet<>();

 // Add all vertices to queue :: later keep picking minimum
 private void initQueue() {
  Iterator<Node> itr = graphStorage.values().iterator();
  while (itr.hasNext()) {
   queue.add(itr.next());
  }
 }

 // Update key info in queue(min heap) : set edge weight for next minimum cut
 private void updateQueue(Node current) {

  /**
   * Loop through all adjacent of currently removed vertex u and update in queue
   * if adjacent should not be in mst set current adjacent is v and weight(u,v) < v.key 
   * v.key initialized with infinite(max value of Integer)
   * Make greedy choice locally
   */
  Iterator<Entry<Node, Integer>> itr = current.adjacentNodes.entrySet().iterator();
  while (itr.hasNext()) {
   Entry<Node, Integer> next = itr.next();
   Node v = next.getKey();
   if (!mst.contains(v)) {
    int weight = next.getValue();
    if (weight < v.key) {
     v.key = weight;
     // update this in queue
     queue.remove(new Node(v.id));
     queue.add(v);
    }
   }
  }

 }

 private void findMSTPrims() {

  // Loop for all vertices : until queue is empty
  while (!queue.isEmpty()) {
   Node u = queue.remove();

   // Add this to mst set : this now is part of minimum spanning tree
   mst.add(u);

   // Update adjacent keys in queue
   updateQueue(u);
  }
 }

 public static void main(String[] args) {

  PrimsAlgoExample pae = new PrimsAlgoExample();
  pae.createGraph();

  // Print Graph
  System.out.println(pae.graphStorage);

  // Initialize queue
  pae.initQueue();

  // Apply Prims Algo
  pae.findMSTPrims();

  // Print mst path
  System.out.println("");
  System.out.println(pae.mst);
 }

}


Output



Cost of minimum spanning tree is = 5 + 7 + 9 + 15 + 3 + 6 + 8
Cost of mst is 53
Cheers :-)

#Graph #Spanning #Tree #Prims #Algorithm #MST #Connectivity #DataStructure #MinimumSpanningTree